Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Experimental Neurobiology ; : 130-137, 2020.
Article | WPRIM | ID: wpr-832440

ABSTRACT

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder caused by abnormally expanded CAG repeats in the huntingtin gene. The huntingtin gene mutation leads to the progressive degeneration of striatal GABAergic medium spiny neurons (MSN) and reduces the level of brain-derived neurotrophic factor (BDNF) in HD patient’s brain. BDNF is an essential neurotrophic factor for the cortico-striatal synaptic activity and the survival of GABAergic neurons. In this study, we transplanted BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) into the contra-lateral side of unilateral quinolinic acid (QA)-lesioned striatum of HD rat model. The results of in vivo transplantation were monitored using various behavioral tests, 4.7 T animal magnetic resonance imaging (MRI) and immunohistochemical staining. We observed that the QA-lesioned rats receiving HB1.F3.BDNF cells exhibited significant behavioral improvements in the stepping, rotarod and apomorphine-induced rotation tests. Interestingly, contralaterally transplanted cells were migrated to the QA-lesioned striatum and the size of lateral ventricle was reduced. Histological analyses further revealed that the transplanted cells, which had migrated to the QA lesion site, were differentiated into the cells of GABAergic, MSN-type neurons expressing DARPP-32, and neural networks were established between the transplanted cells and the host brain, as revealed by retrograde tracing. Finally, there was a significant reduction of inflammatory response in HB1.F3.BDNF-transplanted HD animal model, compared with vehicle-transplanted group. Taken together, these results suggest that HB1.F3.BDNF can be an effective therapeutic strategy to treat HD patients in the future.

2.
Investigative Magnetic Resonance Imaging ; : 17-25, 2019.
Article in English | WPRIM | ID: wpr-740165

ABSTRACT

We discuss recent advances in Gd-based T₁-weighted MR contrast agents for the mapping of cellular pH. The pH plays a critical role in various biological processes. During the past two decades, several MR contrast agents of strategic importance for pH-mapping have been developed. Some of these agents shed light on the pH fluctuation in the tumor microenvironment. A pH-responsive self-assembled contrast agent facilitates the visualization of tumor size as small as 3 mm³. Optimization of various parameters is crucial for the development of pH-responsive contrast agents. In due course, the new contrast agents may provide significant insight into pH fluctuations in the human body.


Subject(s)
Biological Phenomena , Contrast Media , Human Body , Hydrogen-Ion Concentration , Tumor Microenvironment
3.
Journal of Rheumatic Diseases ; : 46-56, 2019.
Article in English | WPRIM | ID: wpr-719461

ABSTRACT

OBJECTIVE: We undertook this study to investigate the discriminant metabolites in urine from patients with established rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and from healthy individuals. METHODS: Urine samples were collected from 148 RA patients, 41 SLE patients and 104 healthy participants. The urinary metabolomic profiles were assessed using 1H nuclear magnetic resonance spectroscopy. The relationships between discriminant metabolites and clinical variables were assessed. Collagen-induced arthritis was induced in mice to determine if a choline-rich diet reduces arthritis progression. RESULTS: The urinary metabolic fingerprint of patients with established RA differs from that of healthy controls and SLE patients. Markers of altered gut microbiota (trimethylamine-N-oxide, TMAO), and oxidative stress (dimethylamine) were upregulated in patients with RA. In contrast, markers of mitochondrial dysfunction (citrate and succinate) and metabolic waste products (p-cresol sulfate, p-CS) were downregulated in patients with RA. TMAO and dimethylamine were negatively associated with serum inflammatory markers in RA patients. In particular, patients with lower p-CS levels exhibited a more rapid radiographic progression over two years than did those with higher p-CS levels. The in vivo functional study demonstrated that mice fed with 1% choline, a source of TMAO experienced a less severe form of collagen-induced arthritis than did those fed a control diet. CONCLUSION: Patients with RA showed a distinct urinary metabolomics pattern. Urinary metabolites can reflect a pattern indicative of inflammation and accelerated radiographic progression of RA. A choline-rich diet reduces experimentally-induced arthritis. This finding suggests that the interaction between diet and the intestinal microbiota contributes to the RA phenotype.


Subject(s)
Animals , Humans , Mice , Arthritis , Arthritis, Experimental , Arthritis, Rheumatoid , Choline , Dermatoglyphics , Diet , Gastrointestinal Microbiome , Healthy Volunteers , Inflammation , Lupus Erythematosus, Systemic , Magnetic Resonance Spectroscopy , Metabolome , Metabolomics , Oxidative Stress , Phenotype , Spectrum Analysis , Waste Products
4.
Experimental & Molecular Medicine ; : e35-2013.
Article in English | WPRIM | ID: wpr-35840

ABSTRACT

Apoptosis has an important role in maintaining tissue homeostasis in cellular stress responses such as inflammation, endoplasmic reticulum stress, and oxidative stress. T-cell death-associated gene 51 (TDAG51) is a member of the pleckstrin homology-like domain family and was first identified as a pro-apoptotic gene in T-cell receptor-mediated cell death. However, its pro-apoptotic function remains controversial. In this study, we investigated the role of TDAG51 in oxidative stress-induced apoptotic cell death in mouse embryonic fibroblasts (MEFs). TDAG51 expression was highly increased by oxidative stress responses. In response to oxidative stress, the production of intracellular reactive oxygen species was significantly enhanced in TDAG51-deficient MEFs, resulting in the activation of caspase-3. Thus, TDAG51 deficiency promotes apoptotic cell death in MEFs, and these results indicate that TDAG51 has a protective role in oxidative stress-induced cell death in MEFs.


Subject(s)
Animals , Mice , Apoptosis , Embryo, Mammalian/cytology , Fibroblasts/enzymology , Gene Expression Regulation , Intracellular Space/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , Transcription Factors/deficiency
5.
International Journal of Stem Cells ; : 79-83, 2012.
Article in English | WPRIM | ID: wpr-25518

ABSTRACT

BACKGROUND AND OBJECTIVES: Ischemic stroke caused by middle cerebral artery occlusion (MCAo) is the major type of stroke, but there are currently very limited options for cure. It has been shown that neural stem cells (NSCs) or neural precursor cells (NPCs) can survive and improve neurological deficits when they are engrafted in animal models of various neurological diseases. However, how the transplanted NSCs or NPCs are act in vivo in the injured or diseased brain is largely unknown. In this study, we utilized magnetic resonance imaging (MRI) techniques in order to understand the fates of human NSCs (HB1.F3) following transplantation into a rodent model of MCAo. METHODS AND RESULTS: HB1.F3 human NSCs were pre-labeled with ferumoxides (Feridex(R))-protamine sulfate complexes, which were visualized and examined by MRI up to 9 weeks after transplantation. Migration of the transplanted cells to the infarct area was further confirmed by histological methods. CONCLUSIONS: Based on these observations, we speculate that the transplanted NSCs have the extensive migratory ability to the injured site, which will in turn contribute to functional recovery in stroke.


Subject(s)
Humans , Brain , Dextrans , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Magnetite Nanoparticles , Models, Animal , Neural Stem Cells , Rodentia , Stroke , Track and Field , Transplants
6.
Journal of the Korean Society of Magnetic Resonance in Medicine ; : 171-176, 2009.
Article in Korean | WPRIM | ID: wpr-204156

ABSTRACT

PURPOSE: To investigate the effect of coating material in RF coil, which is one of main parts in MRI machine, on the Q-factor and SNR(signal-to-noise ratio) in MR images. MATERIALS AND METHODS: RF coils with inner diameter of 1.7 mm were made by using copper wires coated with polyester, polyurethane, polyimide, polyamideimide, and polyester-imide, and by using copper wires in which coating materials had been removed. Q-factors of the RF coils were measured by network analyzer, and SNR values in the spin-echo MR images obtained by 600 MHz (14.1 T, Bruker DMX600) micro-imaging system for the coated and uncoated cases. RESULTS: The measured SNRs were almost same for the RF coils with coat-removed copper wires, however SNRs and Q-factors were different for the coated cases depending on the coating material. They were maximized in the polyurethane-coated case in which the SNR was >30% greater than polyester-coated case. CONCLUSION: We made solenoid-type RF coils which were easily used for MR micro-imaging in Bruker MRI probe. There was a significant coating-material dependence in the measured Q values and SNRs for the home-made RF coils. The study demonstrated that the choice of coating material of RF coil may be a critical factor in the MRI sensitivity based on SNR value.


Subject(s)
Copper , Polyesters , Polyurethanes , Signal-To-Noise Ratio
7.
Journal of the Korean Society of Magnetic Resonance in Medicine ; : 8-19, 2008.
Article in Korean | WPRIM | ID: wpr-218301

ABSTRACT

PURPOSE: To investigate the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar nuclear Overhauser effect/enhancement (NOE) interaction through 2D- correlation spectroscopy (COSY) and 2D- NOE spectroscopy (NOESY) techniques. MATERIALS AND METHODS: All 2D experiments were performed on Bruker Avance 500 (11.8 T) with the zshield gradient triple resonance cryoprobe at 298 K. Human brain metabolites were prepared with 10% D2O. Two-dimensional spectra with 2048 data points contains 320 free induction decay (FID) averaging. Repetition delay was 2 sec. The Top Spin 2.0 software was used for post-processing. Total 7 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), glutamine (Gln), glutamate (Glu), myo-inositol (Ins), and lactate (Lac) were included for major target metabolites. RESULTS: Symmetrical 2D-COSY and 2D-NOESY spectra were successfully acquired: COSY cross peaks were observed in the only 1.0-4.5 ppm, however, NOESY cross peaks were observed in the 1.0-4.5 ppm and 7.9 ppm. From the result of the 2-D COSY data, cross peaks between the methyl protons (CH3(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methylene protons (CH2(3,H alpha)) at 2.50ppm and methylene protons (CH2,(3,HB)) at 2.70 ppm were observed in NAA. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. From the result of 2-D NOESY data, cross peaks between the NH proton at 8.00 ppm and methyl protons (CH3) were observed in NAA. Cross peaks between the methyl protons (CH3(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methyl protons (CH3) at 3.03 ppm and methylene protons (CH2) at 3.93 ppm were observed in Cr. Cross peaks between the methylene protons (CH2(3)) at 2.11 ppm and methylene protons (CH2(4)) at 2.35 ppm, and between the methylene protons(CH2 (3)) at 2.11 ppm and methine proton (CH(2)) at 3.76 ppm were observed in Glu. Cross peaks between the methylene protons (CH2 (3)) at 2.14 ppm and methine proton (CH(2)) at 3.79 ppm were observed in Gln. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. CONCLUSION: The present study demonstrated that in vitro 2D-COSY and NOESY represented the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar NOE interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2DCOSY study.


Subject(s)
Humans , Aspartic Acid , Brain , Choline , Creatine , Glutamic Acid , Glutamine , Lactic Acid , Protons , Spectrum Analysis
8.
Korean Journal of Medical Physics ; : 95-101, 2008.
Article in Korean | WPRIM | ID: wpr-7201

ABSTRACT

In this study, we observed the alteration of choline signal intensity in hippocampus region of the depressive rat model induced by forced swimming test (FST). The purpose of this study was to evaluate the antidepressant efficacy in the depressive animal model using MR spectroscopy. Fourteen experimentally naive male Sprague-Dawley rats weighting 160~180 g were used as subjects. Drug injection group was exposed to the FST except for control group. The drugs were administered subcutaneously (SC) in a volume equivalent to 2 ml/kg. And three injections were administered 23, 5, and 1 h before beginning the given test. 1H MR spectra were obtained with use of a point resolved spectroscopy (PRESS) localization sequence performed according to the following parameters: repetition time, 2500 ms; echo time, 144 ms; 512 average; 2048 complex data points; voxel dimensions, 1.5x2.5x2.5 mm3; acquisition time, 25 min. There were no differences in NAA/Cr and Cho/Cr ratio between the right and the left hippocampus both normal control rats and antidepressant-injected rats. Also, no differences were observed in NAA/Cr and Cho/Cr ratio between the normal control rats and the antidepressant-injected rats both the right and the left hippocampus. In this study, we found the recovery of choline signals in the depressive animal model similar to normal control groups as injecting desipramine-HCl which was antidepressant causing anti-immobility effects. Thus, we demonstrated that MR spectroscopy was able to aid in evaluating the antidepressant effect of desipramine-HCl.


Subject(s)
Animals , Humans , Male , Rats , Choline , Hippocampus , Magnetic Resonance Spectroscopy , Models, Animal , Protons , Rats, Sprague-Dawley , Spectrum Analysis , Swimming
10.
Journal of Korean Society of Endocrinology ; : 384-390, 1992.
Article in Korean | WPRIM | ID: wpr-117188

ABSTRACT

No abstract available.


Subject(s)
Pregnancy , Diabetes Insipidus
11.
Journal of Korean Society of Endocrinology ; : 153-159, 1992.
Article in Korean | WPRIM | ID: wpr-185753

ABSTRACT

No abstract available.


Subject(s)
Humans , Male , Disorder of Sex Development, 46,XY
12.
Journal of the Korean Diabetes Association ; : 63-71, 1991.
Article in Korean | WPRIM | ID: wpr-787256

ABSTRACT

No abstract available.


Subject(s)
Animals , Rats , Calcium , Glucose , Insulin , Magnesium , Pancreas
14.
Journal of Korean Society of Endocrinology ; : 282-286, 1991.
Article in Korean | WPRIM | ID: wpr-197232

ABSTRACT

No abstract available.


Subject(s)
Multiple Endocrine Neoplasia
SELECTION OF CITATIONS
SEARCH DETAIL